
Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 94 | P a g e

The EAOO-H Design Model for Transformation of WebGRL

based Web Applications

Sangeeta Srivastava
1
, Rohan Rajiv Saxena

2
, Vandana Gupta

3

1
(Department of Computer Science, BCAS, University of Delhi, India

2
(Department of Computer Science and Engineering, IIT Kharagpur, India

3
(Dept. of Computer Science, Kalindi College/ University of Delhi, India

ABSTRACT

In case of systematic web application development. The first step is to capture the requirements comprehensively

both explicit and implicit requirements. Further, in order to ensure a smooth conversion of comprehensive

description of the requirements we need a design model that can handle the requirements captured earlier in

totality. For this we need a design model that has the ability to present the different perspectives of a web

application holistically. Therefore a new enhanced EAOO-H design model is presented in this paper that can

capture both explicit and implicit requirements with the help of different web specific design models namely the

content, navigation and the presentation models. These web specific models form a very important part of

structured modeling of web applications. Therefore, we need to ensure that these web specific design models are

such that they aid the conversion strategy from the requirements stage to the design stage and further convert

easily into the construction stage. In this paper we present the EAOO-H model used for the transformation

strategy for translation from the webgrl content model to the EAOO-H domain model.

Keywords: EAOOH, Domain, Goal, Navigation, Presentation, WebGRL.

I. INTRODUCTION

Web applications form an essential part of

our lives[1],[2] however, their development lacks a

systematic development approach. The different

phases of the Software Development Life Cycle like

the requirements engineering and the design

engineering have been either skipped or done in a

hurried manner as such we get a web application

which is not well structured as in the case of

conventional information systems. As a result, we

need a systematic process of web based applications

development [3], [4]. The first step of a structured

web application development is that the

requirements need to be captured comprehensively.

In the second step, the design model used for the

web application development should be such that it

provides a seamless transformation from

requirements phase in to the design phase. These

two steps form a very significant part of a web

application development in order to get a good

quality and high stakeholder satisfaction level.

Presently, the spotlight is on the web

application development directly therefore the

requirements phase is completely overlooked and the

goals of the users are comprehended by the designer.

This results in creating misunderstanding and

confusion for the user, not the ―real‖ user

requirements.This causes both the development and

implementation problems for designers and

increases the initial project budget. A good

requirements approach for the web application

would give the designer the ability to take decisions

from the very beginning of the development phase.

These decisions could affect the design of the

website for meeting the real goal requirements and

preferences of user type [5]and [6].

In our EAOO-H design models we use the

GOREWEB framework for Goal Oriented

Requirements to model statics and the dynamics of

requirements especially where behavior can change

in time of web application development systems.

"The use of goal driven requirements analysis helps

in capturing stakeholders’ goals and the requirement

clarification and the conflicts between requirements

can be evaluated and the best design option selected

to suit the requirements [7], [8]. Also there are

specific webgrl diagrams developed from the base

webGRL diagram in the requirements phase which

helps in giving a detailed picture from different

perspectives related to the web applications in the

design phase.

The existing design approaches lack the

seamless transition of comprehensive requirements

namely the implicit and explicit requirements in the

requirements phase to the design phase and also due

emphasis has not been given to the requirements

phase for web applications, especially the non-

functional requirements. The design models based

on the input from the base WebGRL diagram in the

requirements phase helps in giving a detailed picture

from different perspectives related to the web

applications in the design phase. We need a design

RESEARCH ARTICLE OPEN ACCESS

Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 95 | P a g e

approach suitable for handling both simple and

complex web applications. Even though a number of

design approaches are there for web applications,

however they lack the a structured web application

development method and overlook both functional

and nonfunctional requirements needed for a good

web application development. As stated earlier the

use of GOREWEB framework in the requirements

phase solves these problems. The GOREWEB

framework generates a set of specific webgrl

diagrams that not only capture the all-inclusive

requirements but also take care of the conflict

resolutions and provide alternative solutions.

However, for the transformation of these

requirements in totality and losslessly we need a

design approach that has the ability to capture the

requirements presented in the requirements

engineering phase and is also suitable for lossless

and seamless conversion of these requirements into

the design phase. An existing A-OOH design

approach of [9], [10] is chosen as a base design

model and further enhanced to provide the ability for

capturing all-inclusive requirements in the

requirements phase and enable smooth

transformation from the requirements stage to the

design stage for web application development.

The A-OOH design approach has the

ability of capturing the different facets of web

applications however, it does not capture the

nonfunctional requirements, as such the implicit

requirements of the different stakeholders are

overlooked. Therefore, the A-OOH design model

needs to be enhanced to capture both functional and

nonfunctional requirements. In order to capture these

functional and non functional requirements, we need

to enhance the domain , navigation and presentation

design models of AOO-H into the Enhanced

Adaptive Object Oriented Hypermedia (EAOO-H)

design models. The EAOO-H model firstly needs to

be enhanced to capture the different facets of web

application development comprehensively and

losslessly provided as an input from the webgrl

diagrams. Secondly, the output of the EAOO-H

design model has to be such that it provides ease of

transformation from the design model into the

construction phase.

The contribution of the EAOO-H design

approach is that it follows a structured method of

web application development as in the case of

conventional software development. Secondly, the

enhancement of the AOO-H approach results in a

wider requirements capturing capability, as a result

we can capture both goals and softgoals representing

the functional and non-functional requirements of

the different stakeholders of the web application

under development. This capability was lacking in

the A-OOH approach. Thirdly it provides three

different perspectives of a web application

development by using three specific EAOO-H

design models namely the domain model, the

navigation model and the presentation model.

Finally the output of the design model is a UML

profile that can easily be implemented in the

construction stage with the help of an object oriented

language.

In this paper we begin by giving the details

of the Enhanced A-OOH approach for the domain

model and discuss the extensions to the A-OOH

approach required to meet the smooth transition of

content Webgrl in Section 2. In section 3 we present

the enhanced EAOO-H Navigation Model and later

on in section 4 we present the EAOO-H Presentation

Model and thereafter conclude the paper in section

5.

II. THE EAOO-H MODEL
The basics of the EAOO-H approach is

based on the "A-OOH (Adaptive Object Oriented

Hypermedia method)"of [9]. The EAOO-H design

approach follows the same workflow as the A-OOH

and the "OO-H modeling method" of [11]. The

EAOO-H design approach output results in "UML-

profiles" of [12] therefore all the models are

"UML-compliant".

EAOO-H design model considers the

following workflows:

1. Requirements:

 In this stage the requirements for each type

of user are gathered, including the non functional

requirements. This phase is done using the

GOREWEB framework. The webgrl and the

webucm are used to capture the "functional and non-

functional requirements" of the web application

under development. This forms the "base Webgrl

diagram". In the second phase in order to get a more

holistic view of the requirements with respect to the

web the base webgrl diagram has been extended

into the "specific webgrl diagrams" namely the

content, navigation, presentation and other webgrl

diagrams. We use these diagrams as the input to our

design phase. The basis of using these specific

webgrl diagrams is their ability to capture both the

"functional and non-functional requirements"

comprehensively. While most of the existing

approaches focus on the functional requirement

only.

2. Analysis and Design:

In this stage all the activities related to the

analysis and design of the software product are

included:

a. Domain Analysis:
The user requirements captured by the

content webgrl diagram are Goal, Softgoal, Task,

and Resource and the intentional links are namely

the decomposition links, contribution links, means

Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 96 | P a g e

end links and dependency links, the relevant

concepts for the application are gathered besides the

designer knowledge of the domain.

b. Domain Design:

 The content webgrl model of domain

analysis has to be refined in consecutive iterations

with new goals, softgoals etc. stated above into the

final webgrl content diagram with the help of

the GOREWEB framework. This refined content

webgrl diagram is used in the model transformation

strategy for smooth transition from the content

webgrl diagram into the EAOO-H domain model

explained below.

c. Navigation Design:
The domain information along with the

navigation webgrl diagram is the main input

for the design navigation activity, which is done

using the transformation strategy for the transition of

navigation webgrl to navigation model. The

"navigation model is captured by means of multiple

Navigation Access Diagrams as in [10] representing

the different navigational views where the

 navigational paths are defined to fulfill

both the different functional and the non-functional

requirements" and the organization of that

information in abstract pages.

d. Presentation Design:

 Once the logic structure of the interface is

defined, the presentation webgrl diagram is used as

an input to the transformation process for

transforming the Presentation diagrams that allows

specifying the location, appearance and additional

graphical components for showing the information

and navigation of each of the abstract pages.

3. Implementation:

Implementation is the final workflow

considered in the EAOO-H design model where the

final application is generated.

4. Test:

The goal of this workflow is to verify that

the implementation work is as intended. The Steps 1

and 2 are done using Web GRL diagrams and the

domain analysis results in the Web Specific GRL

diagrams. With the help of EAOO-H design model

we map the refined requirements analysis models to

their respective design models. The considered Web

engineering approach EAOO-H is expressed as a

UML compliant class diagram. This has led to the

enhancement and development of our own UML

profile as in [8].

2.1 Discussion on the Extension of the A-OOH

approach to EAOO-H approach

The reasons and the steps taken to enhance

the A-OOH approach into the EAOO-H approach

are:-

 The A-OOH approach is requirement based

whereas our work is goal oriented therefore in

place of task we extend the goal as well as soft

goals to the stereotypes defined in the A-OOH

approach into navigation and presentation

stereotypes.

Figure.1: Showing Content Goals, tasks and

Resources

 The A-OOH model uses the adaptive OOH

approach to define the domain and the

navigation model from the use case diagrams

using domain analysis. We differ here by

gathering the requirements and using gore

approach to develop the specific WebGRL

diagrams using webgrl approach for web

applications.

 We do the requirements specification and

analysis using the Webgrl approach and use

EAOO-H only for the design phase to generate

the domain model, navigation model and the

presentation model based on the specific webgrl

model .

 We extend the UML profile of the A-OOH

approach by defining new stereotypes into the

UML Profile for the EAOO-H approach to

support these design models.

Once the requirements have been defined

using the Web GRL diagram a transformation

approach can be used to obtain the following design

models for the website.

 1."Domain Model (DM)":

 The transformation strategy uses a set of

rules to transform these web specific diagrams into

the Domain model (DM), for defining the structure

of the domain data.

Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 97 | P a g e

 2. "Navigation Model (NM)":

NM is used to represent the "structure and

behavior of the navigation view over the domain

data".

3."Presentation Model (PM)":

PM represents the "layout of the generated

hypermedia presentation".

All of which are expressed using a UML

compliant UML profile. In the next section the

EAOO-H DM has been explained for the reader to

easily follow the derivations of them.

III. THE EAOO-H "DOMAIN MODEL

(DM)"
As the result of the domain analysis and

domain design phases the domain model (DM) is

defined. "It specifies the structure of the Web

application domain data. The EAOO-H DM is a

UML compliant class diagram. It give main points

of the structure and functionality required of the

relevant concepts of the application and reflects the

static part of the system. The main models elements

of a class diagram are the classes with their

attributes, conditions and operations and their

relationships"[13]. The EAOO-H domain model is

also UML compliant class diagram. Though the

main concepts are same as in A-OOH domain model

however , it varies slightly in the description and the

semantics of the domain model concepts. Now we

present the domain model concepts and their

description

3.1 The EAOO-H Domain Model Concepts

The EAOO-H domain model essentially consists

of the basic modeling elements of a class diagram

to capture the structure and the functionality of the

Content Webgrl diagram and ensure a smooth

transformation from the Webgrl content Model to

the EAOO-H domain model.

The Domain Model is composed of the following

concepts:-

3.1.1 Domain Classes (DC):
The Domain model consists of the domain

class embodying the main objects, interactions in the

application and the classes to be customized with an

extensible program-code-format for object creation,

giving preliminary values to state i.e part variables

and executions of behavior using member functions

or methods. The class stores the information content

such as fields, attributes etc. The behavior of class is

characterized utilizing methods. Operations

are basically the subroutines for operating on objects

or classes. These operations may lead to the

alteration of the state of an object or basically give

style of retrieving it. It is represented by a UML

class with the stereotype << Domain Class>>. The

class diagram is the main building block of

domain modeling. The domain classes in a domain

model consists of three sections shown in the Fig. 2

of domain class below.

3.2

N

<< domain class>>

Class Name

attribute

operation

variants

Figure 2: Domain Class

A class is made up of three parts as

represented in the diagram above by a box with three

segments:

a) The uppermost segment is used to represent the

name of the class. The name of the class has a

capitalized first letter and is printed in bold and

centered.

b) The central segment represents the information

content of the class and contains the attributes

of the class. The attributes are written in

lowercase with left-alignment.

c) The lowermost segment is used to represent the

executable methods with the class and are

written in lowercase with left-alignment.

An example of a domain class is shown

below for the class name "Author". The author

domain class is composed of attributes author name,

author email and operation to display author list. A

boolean condition can be imposed on the domain

class for it to be valid as shown in fig. 3 below.

Figure 3: Example of the Author Domain Class

In the domain model design of the system,

we pinpoint the classes and group them together for

determining the static relations between those

objects. As we proceed with the detailed modeling,

the classes within the domain model are further

divided into subclasses an example of the same is

shown below. As shown in the fig. 4 below there are

two domain classes namely author and category and

the line shows the link or the association between

them.

Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 98 | P a g e

Category

Subject List
Title

Display cover()
show Abstract ()c

Author

Display author list ()

Author name
Author email

Figure 4: Example of relationships between domain

classes.

3.1.2 Attributes:

defines "the structure of the class". "A class

consists of information or data field explanations

or properties, fields, data members, or attributes.

These are usually field types and names that will be

associated with state variables at program run time.

These state variables either belong to the class or

specific instances of the class" [14]. An example of

the same is Author name: string.

3.1.3 Operations-

The "object class or its instance behavior is

defined using operations. These are subroutines with

the ability to operate on objects or classes. These

operations may alter the state of an object or simply

provide ways of accessing it. Many kinds of

operations exist, but support for them varies across

languages. Some types of methods are created and

called by programmer code, while other special

methods—such as constructors, destructors, and

conversion operators—are created and called by

compiler-generated code" [14]. An example of the

same is the operation name +add to

cart(int,float):void with input of the type int, float

and initialization as void.

3.1.4 Relationship-

 "Referencing between one or more related

elements is represented using relationships. There is

no general notation for a relationship. In most cases

the notation is a line connecting related elements.

Subclasses of relationship are association and

directed relationship. A directed relationship is

relationship between a collection of source elements

and a collection of target elements. There is no

general notation for a directed relationship. In most

cases the notation is some kind of line drawn from

the source to the target. Specific subclasses of the

directed relationship define their own notation.

Subclasses of the directed relationship are

generalization and dependency. Generalization is a

directed relationship between a superclass and a

subclass. Dependency is a directed relationship

which is used to demonstrate that some UML

element or a set of elements requires, needs or

depends on other model elements

for specification or implementation. Dependency is a

relationship between named elements as given in"

[14]. "An association represents a family of links. A

binary association is normally represented as a line.

An association can link any number of classes to

depict a relationship between them. An association

can be named, and the ends of an association can be

adorned with role names, ownership indicators,

multiplicity, visibility and other properties.

There are four different types of association: bi-

directional, uni-directional, Aggregation and

Reflexive. For instance, an author class is associated

with a category class bi-directionally. Association

represents the static relationship shared among the

objects of two classes " [14]. Refer to figure 4

above.

3.1.5 Check:
"A constraint is a packageable element

representing some check condition, restriction or

assertion related to some element that owns the

constraint or several elements". "Constraint is

usually specified by a Boolean expression which

must evaluate to a true or false. Constraint must be

satisfied by a correct design of the system.

Constraints are commonly used for various elements

on class diagrams. In general there are many

possible kinds of owners of a constraint. Owning

element must have access to the constrained

elements to verify constraint. The owner of the

constraint will determine when the constraint is to be

evaluated" [14]. For example, an operation can have

pre-condition and/or a post-condition constraints. A

Constraint is of the form '{' (name':') boolean

expression '}' . Some of the languages used to define

constraints are OCL, Java or any other constraint

language .An example of the same is show below in

fig. 5 and fig.6. For example a constraint on a class

attribute can be +author: String {author-

>notEmpty()}

Author

+Display author list (): void

+Author: String { author->notEmpty()}
+Author email: String

Figure 5: Constraint on Attribute

A constraint can be applied to an

association or a class and is represented by a

constraint string near the name or the symbol for the

element. If a constraint applies to two elements, for

example, two associations or to two classes then it is

represented by a dashed line with an arrowhead

between the elements with the constraint string

labelling in curly braces. The direction of the arrow

represents important information as the tail element

of the arrow is mapped to the first position and the

Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 99 | P a g e

head element is mapped to the second position in the

constrained Elements collection.

Figure 6: Constraint on association between classes

The different elements of a Domain Model

have been described above. These provide a

conceptual view of the web application, which is a

very vital part of the web application development.

The data or the content required within the web

application is captured with the help of domain

model concepts like Domain classes, relationships

etc. Another important aspect of web application is

the navigation within the website. This forms an

intrinsic part of the web application development.

The navigational views of the requirements captured

by the navigational webgrl diagrams is represented

with the help of the Navigation Design model

described in the section below.

IV. THE ENHANCED A-OOH (EAOO-H)

NAVIGATION MODEL
Once the domain model of the web site

with the help of the WebGRL has been done we

need to consider the Navigation Design of the

software product. In this section, we present the

Enhanced AOO-H navigation model. This

navigation model is an enhanced version of the ―A-

OOH Navigation Model‖ [7]. The extensions and

tuning of the A-OOH model has been done to ensure

that the specific webgrl diagram is captured in

totality and there is no loss of information while

transformation.

The domain information is the main input

for the design navigation activity, where the

navigational paths are defined to fulfill the different

functional requirements and the organization of that

information in abstract pages. As in the case of ―A-

OOH Navigation Model the structure and behavior

of the navigation view over the domain data is

defined‖ [9] and [10] in the EAOO-H design model

also.

4.1 The Navigation Met model

The main activity of the navigation model

is to capture the navigation requirements specified

by the stakeholder. In order to do so we need to

capture where the navigational paths are defined to

fulfill the different functional requirements and the

organization of that information in abstract pages.

We present the navigation metamodel which forms

the basis for the EAOO-H Navigation model design

in the fig. 7 below.

The Navigation metamodel is made up of

two basic concepts:- the navigation node and the .

navigation link. The navigation node is used to

present the source and target destinations for a

navigation path. The navigation path is represented

with the help of the navigation link. A navigation

model can have any number of navigation nodes and

navigation links. The navigation node is further

specialised into three types of nodes namely the

navigation class, menu and access primitives. The

navigation path can be between any three of these.

i.e. a navigation path maybe between a navigation

class and a menu or a navigation class and an access

primitive or vice versa. All possible combinations of

navigation between the three types of classes are

permitted. However in case of a menu having

multiple navigation paths to different navigation

class, each navigation path between the menu and a

navigation class will be represented separately by as

many navigation links as the navigation paths from

the menu to the different navigation classes.

SRIndex

SRNavigation Class

SRNavigation Link

SR
Navigation
Attribute

SRTraversal Link

SRGuided Tour

SRNavigational Node

SRMenu

SRQuery

SRNavigation Model

SRShow All

SR
Navigation
Operations

SRAccess Primitive

has linkshas nodes 1 1

0..n0..n

0..n

0..n1

1 target

origin

0..n

0..n

1

1

1

SR
Navigational
Condition

SRService Link

Figure 7: The Navigation Meta model

Each navigation class is composed of

attributes and navigation operations. A navigation

class may have one or more navigation operations.

Navigation attributes are used to store the properties

of the navigation class and navigation operations are

used for display or to carry out a procedure for that

navigation class."Access primitive can be an Index ,

a Guided Tour, Showall or Queries which

collaborate in the fulfilment of every navigation

requirement of the user . further there is a Menu or a

Collection of hierarchical structures defined in

Navigational Classes" [13]. The most common

important of collection type is the concept of main

grouping Navigational Links in various navigation

course. The navigation tie-in is used to represent

relationship between two navigation classes.

Navigation links are of two types namely the

traversal link and the service link. In case of a

navigation link is used to navigate from the source to

target navigation class for traversal or simple

Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 100 | P a g e

process like display the target navigation class it is a

traversal link. However if the navigation link results

in an update of the logic while traversing from the

source to the target navigation class in service link.

4.2 Navigation Access Diagram(NAD)

An EAOO-H Navigational Model (NM)

describes a navigation view on data specified by the

Domain Model. In AOO-H and OO-H the NM is

captured by one or more Navigation Access

Diagrams (i.e. NADs). The designer should

construct as many NADs as different views of the

system are needed, and provide at least one different

NAD for each identified (static) user role. The

AOO-H Navigation model the NAD is composed of

Navigational Nodes, which represents a restricted

view of the domain concepts, and their relationships

indicating the navigation paths. The A-OOH

Navigational model has been enhanced to transform

the WebGRL navigation diagram. The EAOO-H

Navigation model used by us is composed of

Navigational Nodes, and their relationships

indicating the navigation paths the user can follow in

the final website Navigational Links. There are three

types of Nodes: (a) Navigational Classes (which are

view of the domain classes), (b) Access primitive

which can be Index , Guided Tours, Showall or

Queries which collaborate in the fulfillment of every

navigation requirement of the user and (c) Menus or

Collections (which are (possible) hierarchical

structures defined in Navigational Classes. The most

common collection type is the concept of menu

grouping Navigational Links. Navigational Links

(NL) define the navigational paths that the user can

follow through the system. A-OOH defines two

main types of links: Transversal links (which are

defined between two navigational nodes) and

Service Links or the Means End Link (in this case

navigation is performed to activate an operation

which modifies the business logic and moreover

implies the navigation to a node showing

information when the execution of the service is

finished. We further enhance the navigation links to

represent the contribution link and decomposition

links of the navigation Webgrl diagram. The

contribution link of the navigation webgrl diagram

will be represented as a traversal link or a service

link depending on the contribution provided by the

task and a decomposition link between a parent goal

into sub goals is represented in the EAOO-H

navigation model by a navigation target with service

link which is represented by a link to an access

primitive or simply by an access primitive alone .

The various navigation model concepts used by us

for the transformation of the navigation webgrl

diagram into the EAOO-H navigation model are

explained below.

4.2.1 The Navigation Node

Every navigation node is associated to an

(owner) Root Concept from the DM attached to it by

the notation: ―Node:DM.RootConcept‖. "Navigation

nodes" are of three kinds: namely the Navigational

Classes, Access primitive and Menus or

Collections.

 Navigational Classes (NC):

 These are domain classes consisting of attributes

and operations whose the visibility is

dependent on the permission for access to the class

members.

N

<<navigation class>>

Class Name

attribute

operation

variants

 Figure 8: Navigation Class

It is denoted by a UML class embodied by

a ―stereotype the << Navigation Class>>‖ as shown

in Fig. 8 above.

 Access primitives-

Access primitives is required to access

navigation objects to satisfy the navigational

requirements of the user.So It is defined by the

UML stereotypes:Index, Guided tour, Showall

and Query. These stereotypes and icons stem

from (19) and Isakowitz, Stohr and

Balasubramanian (23) are defined below:

 Index –

 Index is a compound object, with one or

more "index items" . Each "index item" is a

named object, with a link to the "instance of a

navigation class". "Each index is a member of

some index class, which is stereotyped" by

«index» with a corresponding icon. "An index

class must be built to conform to the

composition structure of classes" [12]. With

the help of an index the instances of a

navigation class are permitted to have a direct

access as shown in fig. 9 below. In

<< navClass>>
Navigation Class

<<index>>

Index

Index item*
name: String

<< navClass>>
Navigation Class

Index

1

*

Figure 9: Index Class and shorthand for index

Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 101 | P a g e

the short form the association between

Index and Navigation Class is derived from the

index composition and the association between

IndexItem and NavigationClas as in [13].

 Guided tour –

A guided tour is an ordered access to "instances

of a navigation class". "For classes, which

contain guided tour objects we use the

stereotype" «guidedTour» and its corresponding

picture depicted in Fig. 10. "Any guided tour

class must be built to conform to the

composition structure of classes" as in [13]

shown in the Fig 10. below. Each Next Item

must be connected to a "navigation class".

"Guided tours may be controlled by the designer

or by the system. Fig. 10 shows the shorthand

notation for a guided tour class" .

<< navClass>>
Navigation Class

<<guided tour>>

Guided Tour

Next item
name: String

<< navClass>>
Navigation Class

Guided Tour

1

*

ordered*

ordered

Figure 10: Guided Tour class and shorthand for

guided tour

 Query- A "query is a class with query string as

an attribute. This string may be given, for

instance, by an OCL select mathematical

operation"."For query classes we use the

stereotype" «query» and the icon depicted in

Figure 11 below.

<< navClass>>
Navigation Class

<< navClass>>
Navigation Class

Guided Tour

*
ordered

<< navClass>>
Navigation Class

Index

*
ordered

1

1

Query

Query

0..1

*

<<query>>

Query

Query Form 1
input Field: String

{xor}

Figure 11: Query Class and Shorthand for Query

Any "query class" is part of "two directed

associations related by the constraint {xor}". "Query

with several result objects is modelled" to leading

first to an index supporting the natural "selection of

a particular instance of a navigation class". The

"query" result can "alternatively be used as an input

for a guided tour". Figure 11 above also shows the

shorthand annotation for a query class in

combination with an index class or with a guided

tour.

 Show All -: A show all provides navigation

without indexing and without internal

navigation, all the objects are shown in the same

abstract page. This is modeled by the

stereotype<<Showall>> and its corresponding

icon is depicted in the Fig. 12 below.

<< navClass>>
Navigation Class

<<showall>>

Showall

name: String

<< navClass>>
Navigation Class

Showall

1…n

1..n

Figure 12: Showall Class and shorthand for showall

 Menu:- "A menu is a composite object"

which contains a collection of navigation

classes and navigation links represented by a

"fixed number of menu items. Each menu

item has a constant name and owns a link

either to an instance of a navigational class or

to an index, guided tour or query". Another

most common collection type is the concept

of menu grouping navigation links.

Item 1

Item 2

Item 3

Item 4

Item 5

Menu

1

<<menu>>

Menu

MenuItem *
Name=<<menuitem>>

{frozen}

{xor}

{xor}

{xor}

{xor}

1

1

1

1

Figure 13: Menu class and shorthand for Menu

Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 102 | P a g e

 A menu class which is stereotyped by

«menu» with a corresponding icon as shown fig. 13.

A menu class should conform to the composition

structure of classes described earlier.

4.2.2 Navigational Links (NL)

The Navigation Link is used to define the

navigational route which user can follow through

the system of rules. "A-OOH defines two main types

of links:Transversal link : It is defined between two

navigational nodes and Service Links for example

navigational class, collection or access primitives as

in [13] and Service or Means End Link : Navigation

is performed to activate an operation which modifies

the business logic and moreover implies the

navigation to a node that displays data when the

execution of the service is finished" [13]. We further

enhance the navigation links to represent the

contribution link and decomposition links which

will be represented as associations in the navigation

model .

 T-Links (Transversal Links)- "They are

defined between two navigational nodes

(navigational classes, collections or navigational

targets). The navigation performed is done to

show information through the user interface,

without modifying the business logic. This type

of links is represented by the stereotype

<<TransversalLink>>" of [10] as shown in

fig.14.

<<index>>

Author : DC Author

Index item*
name: String

<< navClass>>
Author Details

Name: string
Address:string
Area of specialisation: string
Email: string

View Author details
<<Traversal Link>>

Figure 14: Transversal Link

 S-Links (Service Links)- "Navigation is an

operation which modifies the business logic

and moreover implies the navigation to a node

showing information when the execution of

the service is finished. It is established when

a service of the navigational class is activated.

This type of links is represented by the

stereotype <<ServiceLink>> and has

associated the name of the invoked service"

as in [10].

<< navClass>>
Author Details

Name: string
Address:string
Area of specialisation: string
Email: string

Place Order
<<service Link>>

<< navClass>>
Order

Orderid :int
Orderitem: String
Qty: numeric
Price:float

+place order(string)

Figure 15: Service Link

In case the navigation performed is done to

show information through the user interface, without

modifying the business logic, then the navigation

link is represented by a traversal link. Further, If a

navigation link is also a decomposition link then as

many traversal links between NCs are added as the

number of decompositions of the navigation goal

into its navigation sub goals represented by access

primitives . However, if the navigation link is a

contribution link then it is represented by a traversal

or service link depending on the goal requirements.

The different elements of a Navigational

Access Diagram(NAD) described above are used to

form the NADs for the software product. These

provide a navigational view of the web application,

which is a very important part of the web application

development. Different views result in more than

one NADs. The greater the number of views

presented with the help of the NADs more the

exhaustive study of the different navigations

required by the stakeholders for the software

product.

V. THE EAOO-H PRESENTATION

MODEL
In this part, we briefly present the EAOO-H

Presentation model in order to ensure that the

transformation of specific WebGRL models is

flawless and all the elements of the WebGRL model

are well represented in the enhanced AOO-H design

models. Presentation Design: Once the logic

structure of the interface is defined, EAOO-H allows

specifying the location, appearance and additional

graphical components for showing the information

and navigation of each of the abstract pages. This is

presented with the help of a Design Presentation

Diagram consisting of two different levels.

We have already discussed the Content and

the Navigation Webgrl models and their

transformation to EAOO-H Domain and Navigation

Design Models in Sections 3and 4. In this section we

first present the EAOO-H Presentation Model and its

concepts.

5.1 The Presentation Design Model

The Presentation model represents the

layout of the generated hypermedia. During the

presentation design, the concepts related with the

abstract structure of the site and the specific details

of presentations are gathered. The Presentation

Model is defined in this activity. It can be captured

by one or more "Design Presentation Diagrams

(DPDs), for every NAD in the system there is a

corresponding DPD". In the next section we present

the Enhanced Design Presentation Diagram (EDPD)

Metamodel and the description of its main elements.

Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 103 | P a g e

5.2 The EDPD Metamodel

The DPD MOF metamodel has been

defined to formalize the elements of the DPD and

the existing associations among them as in [15]

shown in fig. 16. A metamodel defines the language

to express the model. There are two main basic

elements of a DPD Metamodel namely the

Presentation Nodes and the relationships among

them represented by the Presentation Links.

Presentation Model
name: string

Presentation Node
name: string

Presentation Link

+nodes +associations

11

0..n 0..n

Figure 16: DPD Main Elements

There are two types of presentation nodes,

the structure node and the layout node. The structure

and the presentation nodes are considered at two

different levels of the DPD. The structure nodes are

used to define the structure of the presentation of the

website and are considered at level zero of the DPD.

The Layout of the presentation model for the web

application is considered at level one. The different

types of structure and layout nodes are described

briefly below.

Structure Node

Page Chunk

Layout Node

Cell

Presentation
Page

Presentation Node
name: string

type:Frame Set Type
framespacing: Integer
frameborder: Integer
0..n

Frameset

Layout
align:Aign type
width: Integer
height: Integer
cell padding: Integer
cellspacing: Integer
border:Integer
isinitial: boolean

Presentation Class

class: Presentation class

Frame

Window
isintial:boolean

Figure 17: Presentation Node Subtypes

The different types of Structure Nodes are:

Presentation Page, Window, Frame, Frameset,

Presentation Class and Page Chunk (level zero of the

DPD) .Similarly the different types of Layout Nodes

considered are: Layout and Cell (level 1 of the DPD)

as shown in fig. 17.

Just like the presentation nodes there are a

variety of presentation links to represent different

types of relationships between the presentation

nodes. In a Presentation Model five types of

Presentation Links can be defined as shown in

fig.18.

 Navigates: This relationship can be defined

between Presentation Page elements.

 Builds- This relationship is defined between

server page and client page where a server script

is used to build the client page.

 Submit :It is defined as the relationship between

the form and the server page where the input

content of the form is submitted to the server

page.

 Contains: This relationship is defined between

Presentation Page elements and Page Chunk

elements to indicate a presentation chunk is

contained (and shown) in one or several

Presentation pages.

 Redirects:- This relationship can be defined for

a Presentation Page that redirects to itself.

 Displays or Presents:-This relationship can be

defined between a Presentation Page and its

frame elements or a window and frame on

which the presentation page is displayed.

 IncludeFrame: This relationship can be defined

between FrameSet and Frame elements.

 IncludeCell; This relationship is defined

between Layout and Cell elements

Presentation Link

Displays

Contains

Navigates

name:string

Builds

Submit

IncludeFrame
Scrolling:ScrollingType
src: String
noresize :Boolean
marginheight:Integer
marginwdth:Integer
size:Integer
number:Integer

IncludeCell
rowspan:Integer
colspan:Integer
row:Integer
col:Integer
Height:Integer
wdth:Integer
align:Aligntype
valign:Valigntype
number:Integer
zone:ZoneBorderLayout

Figure 18: Presentation Link types

The Enhanced DPD (EDPD) Metamodel

and its elements have been described in this section

in brief we now present the elements of the EDPD

in detail in the next section.

5.3 The Enhanced Design Presentation Diagram

The basis of the enhanced DPD described

below is the A-OOH DPD. However as per the

requirements of the WebGRL diagram and to ensure

faultless transformation from WebGRL diagrams to

EAOO-H based models we have enhanced the

existing A-OOH DPD to the Enhanced Design

Presentation diagram (EDPD). The enhanced version

EDPD and its modelling elements are described

below.

There are two main goals of the EDPD, the

first goal is to describe the organisation of pages

within the website where navigation nodes of the

NAD are assembled into the presentation pages.

Presentation Pages are abstract pages which can be

represented by converting them into one or more

Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 104 | P a g e

concrete pages. The designer can use additional

static pages to the EDPD also. This represents the

level 0 of the EDPD.

The second goal is used to represent the

layout and style of each page of the interface. The

layout and style are used by the designer to describe

the components, their style and their positioning on

the page. The designer can later on change the

individual page structure and add static elements to

the EDPD. This shape the level 1 of the EDPD

formed by expanding the abstract pages defined in

the level 0 earlier. After the refinement of the EDPD

the front end for the web application, static or

dynamic can be generated depending on the

constraints of the target platform. The main

modelling elements of the EDPD are described next.

We classify them into level zero or level one

depending on where they can be defined.

5.3.1 Main Elements in the Level Zero of the

EDPD

As aforementioned this level provides the

assembling of navigational nodes into presentation

pages that form the page structure of the website.

Moreover new static paper can be added to this

level. We enhance the existing DPD of A-OOH to

represent the following:-

o Presentation page

This element corresponds to an abstract

page which can be a Server or a Client Page with an

associated Presentation model where we define all

the components shown in that page. It is represented

as a UML Package with the stereotype

<<Presentation Page>> as in fig.19. Inside this

package the Presentation Model attached to the

Presentation Page is shown.

<< Presentation
Page >>
Home

 Figure 19: Presentation Page

 Server Page is used to specify content

generated using a server script.

 Client Page is used to specify content generated

using a client script which is presented or

displayed in a target window. The position of

the content on the presentation page is given by

the window, frame or framesets.

 Target is an abstract class used to generalize

the concept of window and frame on which the

presentation page is displayed.

 Window is the part of the user interface where

presentational interface components are

displayed. The notation is a UML class with the

stereotype <<Window>> as we can see in

Fig.20 below.

All the elements described above are presented

in the fig 20 below.

Presentation Page

Server Page Client Page
builds

Target

displayed

Client ScriptServer Script

Frameset Window

Figure 20: Main Elements in the Level 0 of the

EDPD

o Page Chunk

The Page Chunk element defines a section

of an abstract page. The constituents of the

pagechunk are defined in the associated Presentation

model. This section can be used again in other pages

of the Web application as such repetition is avoided.

It is symbolised by a UML Package with the

stereotype <<Page Chunk>> in fig. 21. The

Presentation Model attached to the Page Chunk is

shown inside it.

<<Page Chunk>>
Menu

Figure 21: Page Chunk

o FrameSet, Frame

The FrameSet element represents a set of

frames in which the browser window can be

divided. In this way we provide the designer the

possibility of using a frame based design for his

application. It is symbolised by a UML class with

the stereotype <<FrameSet>> as seen in fig 22. The

Frame element represents a frame that is part of a

FrameSet. It is symbolised by a UML class with the

stereotype <<Frame>>. FrameSet and Frame

elements are associated with the

<<includeFrame>> association as in [15].

Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 105 | P a g e

<<Window>>
Web

vv

<<Frame>>
MainRight

<<Frameset>>
Main

<<Frame>>
MainLeft

Figure 22: Window, FrameSet and Frame elements

5.3.2 Main Elements In the Level One of the

EDPD

As already explained, the goal of level one

is to describe the layout and style of each page of

the interface defined in the level 0. Static elements

can be added to the pages like static text. If we use

frames and framesets to present the content on a

presentation page then each frame or a frameset has

a presentation class associated with it.

 Presentation Class

The Presentation class is a structural unit

which contains the user Interface Components

shown in fig. 23 which are to be represented in that

frame or frameset.

N

<<presentation class>>

Class Name

attribute

operation

variants

 Figure 23: Presentation Class

 Interface Components are text image video

audio anchor and forms.

 Composed Interface Component

 The composed interface

components considered are Collection, Anchored

Collection and anchor

 Anchor- Anchor is a composed interface

component which contains a simple interface

component.

 Collection- Collection is a collection of simple

interface components image, text, video and

audio.

 Anchored Collection-Anchored Collection is a

collection of anchors.

 Simple Interface Component

 The simple interface components considered

are:

 Image, Text, Audio, Video and Form Elements

(e.g. Input Button, Input Submit…etc).

Interface
Components

Anchor

Image
Text

Form Element

Simple Interface
Components

Composed Interface
Components

Anchored
Collection

Collection

Figure 24: Presentation Class and the Interface

Components

 Layout

Instead of using frames, layouts can be

defined for defining the disposition of the objects

visualized in the Web page. These layouts can be of

three different types: BoxLayout, BorderLayout and

GridBagLayout; each of them provides a concrete

distribution for its cells. The layouts are translated,

in last instance, to HTML tables. The different types

of layouts considered can be nested.

 Box Layout
Box Layout arranges components on top of

each other or row of your choice a typical box

layout is shown in fig. 25.

Button2

Button1

Figure25: BoxLayout

 BorderLayout

As the Fig. 26 shows, a BorderLayout has

five areas in which we can place the different

elements of a Web page.

Figure 26: BorderLayout

 GridBagLayout

GridBagLayout is one of the most flexible

layout. A GridBagLayout places components in a

grid of rows and columns, allowing specified

components to span multiple rows or columns. Not

Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 106 | P a g e

all rows necessarily have the same height. Similarly,

not all columns necessarily have the same width.

Essentially, GridBagLayout places components in

rectangles (cells) in a grid, and then uses the

components' preferred sizes to determine how big

the cells should be. The following fig. 27 shows an

example of a gridbaglayout. As you can see, the grid

has three rows and three columns. The button in the

second row covers all the columns, whereas the

third row button covers only the two right columns.

Button2Button1 Button3

Figure 27: GridBagLayout

o Cell

A cell represents a component which is part

of a layout. The cells act as containers for the

interface components.

 The two levels of the EAOO-H

Presentation model have been described in the

section above. With the help of the DPD we can

represent the presentation goals of the presentation

webgrl diagram of the requirements engineering

stage in the design stage in totality.

VI. CONCLUSION
In this paper we have tried to present the

EAOO-H design model for web application. The

three specific design models namely the domain

model, navigation model and the presentation model

represent the three different facets of a web

application. These design models are used to capture

the different perspectives of the web application in a

manner such that the transition from the

requirements stage to the design stage is lossless and

also the output of the design model is a UML

Compliant, UML Profile which can easily be used

for implementation of the web application using an

object oriented language.

The advantage of the EAOO-H approach is

that it captures the different facets specific to web

applications in a comprehensive manner. Also it

makes use of a structured method of web application

development by moving through different stages of

Software Development Life Cycle in a systematic

way. Further the requirements input used for the

EAOO-H design model being a webgrl diagram. We

use a requirements engineering approach that

captures the "functional and nonfunctional

requirements" in entirety. The different webgrl

diagrams provide the different perspective of the

web application. The EAOO-H model has been

enhanced and modified in a manner such that it has

the capability of capturing both goals and softgoals

for a web application. Also the output as stated

above of these design models is a UML Compliant

UML Profile that eases the transformation from the

design stage to the construction stage and reduces

the workload of the coding engineer.

 In future we plan to define a

transformation strategy from the requirements to the

design stage. the development of the transformation

strategy would lead to direct conversion of the

requirements to design phase in an automatic

manner. The entire process from the requirements to

the design phase is done seamlessly and losslessly

resulting in a lot of reduced workload for the design

engineer, thereby generating a high quality product

with lesser resources.

References
[1]. Cachero, C. and Gomez, J. (2002).

Advanced conceptual modeling of web

applications: Embedding operation

interfaces in navigation design. JISBD,

pp.235–248.

[2]. Ceri, S., Daniel, F., Matera, M. and Facca,

F. (2007). Model-driven development of

context-aware Web applications. ACM

Trans. Inter. Tech., 7(1), pp.30-63.

[3]. Koch, N. and Wirsing, M. (2001). Software

engineering for adaptive hypermedia

applications. PhD. Thesis,

ReiheSoftwaretechnik, pp.145-289.

[4]. Kraus, A. (2007). Model driven software

engineering for web applications.

München: Ludwig-MaximiliansUniversität,

pp.73-114.

[5]. Chawla, S., Srivastava, S. and Bedi, P.

(2011). GOREWEB Framework for Goal

Oriented Requirements Engineering of Web

Applications. In: IC3, CCIS 168. Berlin:

Springer-Verlag, S. Aluru et al, pp.229–

241.

[6]. Chawla, S., Srivastava, S. and Bedi, P.

(2015). Goal and Scenario based Web

Requirements Engineering. in International

Journal of Computer Systems Science &

Engineering.

[7]. Chawla, S., Srivastava, S. and Bedi, P.

(2015). Improving the quality of web

applications with web specific goal driven

requirements engineering. International

Journal of System Assurance Engineering

and Management.

[8]. Chawla, S. and Srivastava, S. (2010). Goal

oriented Requirements Analysis for Web

Applications. In: International Conference

on Computer and Software Modeling.

Manila: IEEE, pp.88-92.

Sangeeta Srivastava

et al. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 6, (Part -5) June 2016, pp.94-107

 www.ijera.com 107 | P a g e

[9]. Aguilar, J.A., Garrig´os I, Maz´on, J. N.,

Trujillo, J. (2010). An MDA Approach for

Goal-oriented Requirement Analysis in

Web Engineering. Journal of Universal

Computer Science, vol. 16, no. 17 (2010),

247, pp 2475-2494

[10]. Aguilar, J.A., Garrig´os I, Maz´on, J. N., A

Goal-Oriented Approach for Optimizing

Non-functional Requirements in Web

Applications. (2011), Advances in

Conceptual Modeling. Recent

Developments and New Directions,Volume

6999 of the series Lecture Notes in

Computer Science pp 14-23.

[11]. Gómez, J., Cachero, C. and Pastor, O.

(2000). Extending a Conceptual Modelling

Approach to Web Application Design. In:

Proceedings of the 12th International

Conference on Advanced Information

Systems Engineering. London, UK: Ed.

Springer-Verlag, pp.79-93.

[12]. Srivastava, S. (2015). UML Profile for the

WebGRL Requirements Model and

EAOOH Design Models. International

Journal of Emerging Technology and

Advanced Engineering, 5(8), pp.313-322.

[13]. Srivastava, S. (2014). Model

Transformation Approach for a Goal

Oriented Requirements Engineering based

WebGRL to Design Models. International

Journal of Soft Computing and Engineering

(IJSCE), 3(6), pp.66-75.

[14]. www.uml.org (Accessed June 2016)

[15]. Srivastava, S. (2014). A Systematic

Approach towards Transformation of

Presentation Web Goal Oriented

Requirements Language to Presentation

Design. International Journal of Scientific

and Engineering Research, 5(9), pp.7-17.

